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Radiation falling on the surface of a solid body vaporizes its material. A radiation- 

heated vapor jet is formed. With sufficiently prolonged heating the vapor propagates 
to distances comparable to the dimensions of the body, whereupon the jet begins to 
spread laterally. The vapor density diminishes more rapidlythan in the case of planar 
motion, the transparency of the vapor increases, the radiation penetrates into the deeper 

layers of the material, and vaporizes them. A quasi-steady-state efflux of vapor into the 
vacuum begins. 

The work performed by the expansion forces with increasing jet area near to the critic- 
al cross section (where the flow rate is equal to the speed of sound), is, for a certain ratio 

between the free path of the radiation and the cross section radius, compensated by heat- 
ing due to the absorption of radiation. This makes possible the continuous acceleration 
of the gas and a transition from subsonic to hypersonic motion. Moreover, the “burnup” 
rate can be chosen on the basis of the aforementioned relationship between the radiation 

free path and radius of the solid (i. e. their approximate equality). 
We shall consider the problem of motion in the case of spherical (or cylindrical) symm- 

etry, with the rays also directed solely along the radii. In contrast to the cases of adiab- 

atic motion or plane motion with heating, it is possible to have here steady efflux into 
the vacuum of gas from the core of the initially cold and slowly moving material, i. e. 

from the surface at which vaporization occurs (in the limiting case this is an infinitely 

dense, absolutely cold and stationary gas) with continuous acceleration and passage 

through the speed of sound. 
The dependences of the mass burnup rate, pressure on the surface of the solid, and max- 

imum gas temperature on the total incident radiation flux and sphere radius are consider- 

ed for the case where the radiation absorption factor is constant or is a power function of 

the temperature and density. 
The quasi-steady-state motion of a radiation-heated gas in a long, thin channel of con- 

stant cross section is also considered. On emerging from the channel the gas expands 
rapidly and becomes transparent The burnup rate is determintrl by the length of the 
channel. The solutions considered show that lateral spreading flow can result in theest- 
ablishment of a steady burnup proces .ind that the size of the body affects the burnup 
rate. These solutions reflect certain salient aspects of more complex motions involving 

lateral spading flow 
on reaching the. surface of a solid, a powerfui radiation beam vaporizes its surface 

material. Part of the radiation contimres to be absorbed in the vapor, while the rest pale- 
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trates the vapor, falls on the surface of the solid, and continues to vaporize new lay=% 

If the target body is placed in a medium characterized by sufficiently low prSstUeand 
density (in the limiting case, in a vacuum), the vapor expands rapidly away from its 
surface and forms a vapor stream. The vapor motion near the surface of the solid can be 

considered planar. In the case where the mass absorption coefficient Kis constant, the 

radiation is trapped in a practically constant mass on the order of l/X. After this mass 

has evaporated, there is no further vaporization, and the radiation energy is released in the 
constantly expanding vapor whose temperature increases [l]. With a variable absorption 

coefficient which diminishes with increasing temperature and decreasing density, the 
radiation can heat an ever larger mass: if, on the other hand, the motion is one-dimens- 

ional (planar), it cannot be steady, and the rate of bumup of the solid gradually dimin- 

ishes, while the average vapor temperature rises slowly 1’21. 
In studying the motion of material vapor heated by the radiation it absorbs one often 

encounters the problem of the effect of nonunidimensional flow. Thus, with radiation 

acting on the surface of a solid, the beam can be focused so strongly that its cross section 
and the cross section of the jet of escaping radiation-heated material (often called the 

“flare”) become comparable to or even smaller than the length of this jet, i. e. the pre- 

ssure gradients in the principal and lateral directions approach each other and the vapor 

motion becomes essentially two- or three-dimensional. This produces a drop in the gas 

density and an increase in the transparency of those layers of material in which lateral 

spreading flow occurs; these changes are more rapid than in the one-dimensional planar 
case, The mass and optical thickness of the layers of material in the beam path are 

smaller than in the one-dimensional case which does not involve lateral flow. Even 

when the mass absorption coefficient is constant, the radiation penetrates into the deeper 
layers of the material, which are also heated and begin to move. As a result, a heating 

and vaporization “wave” begins to move into the interior of the material. The rate of 

burnup of the material is then related to the size of the body or the radius of curvature 
of its surface, or, alternatively, to the size of the irradiated spot on its surface (if the 
diameter of the spot is smaller than the dimensions of the body or the radius of curva- 
ture of its surface), and finally, to the depth of the resulting “funnel” or “crater”. 

One can arbitrarily isolate the domain of two-dimensional motion characterized by 

lateral spreading flow and the domain of one-dimensional motion (at the surface of the 

body in the case of free spread of the jet or in the interior of the channel formed as a 
result of irradiation). Due to the rapid drop in density in it, the optical th&nesa of the 
divergent portion of the jet can be constant, so that a constant amount of radiation is 

applied to the domain of one-dimensional (planar) motion, This can result in steady 
motion and heating of the vapor and in steady burnup of the surface material. 

If the characteristic vapor density is sufficiently low relative to the density of the 
solid material, the rate of vapor motion is considerably higher than the rate of progress- 

ion of the boundary beyond which no material is being vaporized. For a certain amount 
of time the progression of this boundary and the change in the radius of curvature of the 
body relative to the initial radius can be neglected; i. e. the vapor can be assumed to 
be coming from the same surface. Establishment of steady motion of the radiation- 
heated vapor is, of course, possible only with a sufficient duration Tof the irradiation 
process. The duration 7 must be larger than the time interval spanning the non-steady- 
state heating and expansion of the vapor to distances at which the jet length exceeds a 
Certain Value, which is in any case larger than the radius of curvature. The size of the 
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body changes as it bums up. With slow variation of the radius of curvature of the body, 
the motion is quasi-steady-state, corresponding to the instantaneous value of this radius 
at each instant. 

Computation of the gas motion in the case of a complex streamline configuration and 

with allowance for the absorption of radiation is, by virtue of the two-dimensional char- 
acter of the problem, quite difficult. This also applies to the determination of the burnup rate 
and pressure at various points of the vaporization surface. We shall consider a problem 
for which such computations can be carried out fairly simply, and for which we can deter- 

mine the basic features of the motion and heating processes with lateral flow. These 
features remain applicable in more complicated instances. 

Let the radiation fall strictly radially part of the radiation penetrating to the surface of 

a solid sphere (or cylinder) of radius rti and vaporizing the material of this surface, and 
the rest of the radiation being absorbed in the vapor to increase their total energy per 

unit mass (i. e. heating or expanding the vapor, and sometimes increasing simultaneously 

its inner and kinetic energy). Let the motion be confined to the radial direction. This is 

possible if the radiation falls on the sphere (or cylinder) from all sides or if the body lies 

“at the bottom” of a cone with straight generatrices and rigid walls which limit the size 
of the gas jet; here the radiation fills the entire cone, and heat conduction to the walls 

(and throughout the gas) can be neglected. 

As we know [3], with planar steady-state motion of a heated gas in a tube of constant 

cross section there can be no transgression of the speed of sound. The only possibility is sub- 
sonic motion with acceleration due to heating. Application of heat to a hypersonically 

moving gas decelerates it. We also know [3 and 41 that spherically or cylindrically sym- 

metrical adiabatic motion of a gas can be either subsonic or hypersonic, since the “sonic” 

surface which in this case bounds the source core is the site of infinite accelerations of 
the gas. With subsonic radial motion in an expanding tube the gas is decelerated; in the 

case of hypersonic motion it is accelerated (Lava1 nozzles in which gases are accelerated 

to hypersonic velocities have a narrow portion at one end). 

In the case of the heated gas flow to be considered in the present paper, the area of the 
surface cross section through which the gas flows increases continuously, and the gas ex- 

periences continuous heating, But if both factors are operating simultaneously, i. e. if 
heating predominates near the surface of the sphere, while the dominant forces at the 
periphery are those of expansion, and if near some critical cross section the work of the 

expansion forces is, in a manner of speaking, compensated by radiation heating (the speed 
of the gas is equal to the speed of sound in this cross section), it is possible to have cont- 

inuous acceleration of the gas up to hypersonic velocities. The heating intensity is related 
to the free path of the radiarj.on, which is variable (this happens, for example, when the 
density varies while the mass absorption coefficient remains constant); the work of the 

expansion forces depends on the critical cross section, so that the determination of all the 

parameters in the critical cross section, i. e. the “selection of the bumup rate, can be 
carried out on the basis of a specific relationship between the radius of this cross section 

and the radiation free path in it. 
1, The system of equations of steady-state motion and heating of vapor in the case of 

radial symmetry can be written as 

5 (v) pm+-1 = M’, dp+pudu=O 
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M’ (h + ‘i2 us + Q) + F = M- (h, + ‘/? 2, + Q) + F, w 
dF 
- = Fxp, 
dr 

h = + * 

Here $7 is the pressure, p the density, u the velocity, h the enthalpy of the material, 

and K the mass absorption coefficient; these parameters refer to a cross section with the 

radius r, Fis the total radiation flux through the entire surface, Mthe (constant) mass 
consumption rate, Q the heat of vaporization of the material, and y the adiabatic index, 

v = 1,2,3 in the plane, cylindrical, and spherical cases; the corresponding values of the 

coefficients 5 ( v) are 1,2 IT, and 4rT, respectively. The boundary conditions for the 

differential equations of Systems (1.1) are 

P + 0, F---+Fco, r-300 

The dependence of the absorption coefficient Ken the thermodynamic parameters is 

considered known, i e. the function x (h, p) or x (p, p) is given. We note that the 

radiation free path is I = I / xp. 

The reaction of the departing vapor increases the pressure on the surface of the evap- 
orating body. However this pressure is usually small as compared with the bulk comp- 

ression modulus of the body, and the change in the density of the material in front of the 

heating and vaporization wave under the action of this pressure is negligible as compared 
with the normal density pO. The radiation free path 1, in the solid is often extremely 

small, and the thickness of the zone in which heating to the boiling point T, at the 

pressure &,, produced in the solid occurs is on the order of lo, and is negligible as 

compared with the radius rO of the body. Between the zone where vaporization has 
terminated, i, e. where there are no liquid droplets, and the zone where it has not begun, 

i. e. where there are no vapor bubbles (in the case of quasi-equilibrium vaporization) 

we have a transitional zone where the pressure p varies little in comparison with p. 
This zone is further characterized by still weaker variation of the equilibrium temperat- 
ure of the vapor and liquid (i. e. the boiling point TI, ), but by substantial variation of 

the vapor and liquid concentrations, as well as by marked variations in the average den- 
sity p of the mixture and its enthalpy has a result of the vaporization heat expenditure 

9. We shall assume that the absorption factor of the vapor at T zz Tk and p =: p,, 
is sufficiently high. This enables us to neglect the width of the transitional (vaporizat- 
ion) zone. 

Thus, if the indicated assumptions are fulfilled, the transitional zone and the zone 
where the material is heated to the boiling point can be replaced by a gap, assuming 

that r, = r,.The subscript S in Equations (1.1) and below denotes parameters at the 

outer boundary of the vaporization zone. 

From the conservation laws at the gap we obtain (the subscript Odenotes quantities 
behind the gap 

p8 + pllU12 = PO, M’ = &30UoFr;’ - L$P&F;-~ 

Wh,+V2u,2+ Q)+F,=M’(ho+l/2~0~)+Po 

Here, u. is the velocity of the material entering the gap. The density of the material 
before it enters the gap is normal density p,, of the solid body. The pressure pa be- 
hind the gap is higher than the pressure pa ahead of it, and both of these quantities are 
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unknown, since the gap moves through the material at a subsonic velocity relative to thr.: 

material behind and ahead of it. 

This implies that h, = h (Tk, p,), where T, is the boiling point; the funcrion 

~&J, i, and therefore h+, (ps ), must be given. At pressures substantial1.y lower than 

the critical pressure the vapor can be assumed to be an ideal gas, i. e. the last Eu, in 

(1.1) is also valid for quantities with the subscript S. The quantity & varies relative.. 

ly little even with substantial variation of the pressure pB (for p c/; P,,, where pT 

is the critical pressure), Since the density p 9 of the gas emerging from the lraporizat. 

ion zone at low pressures p 5 is considerably lower then the density co of the solid, its 

velocity U O is small as compared with the velocity u,* 

(following vaporization); the kinetic energy 7_.!, Oi: / 2 

of the gas ahcad ;jf ihe gap 

of the unvaporizr:~~ materiat en?- 

ering the gap is negligible as compared with the kinetic energy us’ (‘(1 

and its enthalpy hs ; u o and u o2 ,/c can be therefore neglected, 

CL the vapor 

If the initial temparature 21, of the material is’ Pow as compare,! with the boiling 

point Y’k it can be alsLi neglected, Thus. we set Jt,, ._. 0, & Z-Z 0, PC; ._ 6,. 

p,, =: cu. 

If the maximum temperature i’, a x of the vapor attained during its heacing is com- 

siderably higher than the boiling point L”, further if the vapor density in tile zone where 

the maximum temperature has been attained is considerably higher than tll? density ps 

and especially p a, then we can set yi( !? and 2.~~ 3. and since the pressure is 

finite, it follows the p 6 m (or 0, = 1 / p8 = 0) i and, consequ&nUy, ti, _I ii 

(M remains finite) and p, -p *, With sufficient heating of fhe vapor one can also 

neglect the heat of vaporization &; then, of cuurse. ,rs ;. With strong hearing of 

the vapor, assumptions about the quasi-equilibrium character of the process of transition 

from the solid to the gaseous state likewise become immaterial and there is no longer 

any need to intIoduce the gap. Thus, the vaporization surface gives off a cold and slowly 

moving gas, In some cases we sliti, assume that this surface. gives off (from the core of 

the source) an absolutely cold and stationary, infinitely dense gas at finite pressure. 

Thus, four conditions at the gap (the right-hand side of the third Eq. of (I. 1) is equal 

to zero) relate six unknowns; ps, ps, F,, u,, p,, and &I’. By specifying two of them (e. g. 

the radiation flux F, applied to the vaporization surface and the pressure ps at the 

surface), we can determine all of the quantities, including p ,, and &I’, and begin to int- 

egrate the two differential ENS. of the system (1. 1) with allowance for its algebraic rel- 

ations from the point 7 = rs m= TO. On integrati&lc- to ?“:za, we obtain the value of the 

total incident radiation flux F, corresponding to the given parameters at the vaporizat- 

ion wave, i. e. to its specified velocity and pressure. First, however, it is necessary that 

the flux F, be finite; second, the condition ,& - - 0 must be fulfilled, This is possible 

only if these quantities are specified not arbitrarily, hut in a specific relationship to each 

other which, as will be shown below, is found by analyzing the system of equations itself. 

As already noted and as will be demonstrated below, the condition which enables US f0 

determine all the parameters uniquely is the condition of passage through the speed of 

sound in some critical cross section (u” = yp / p)_ We denote all parameters in this 

cross section by the subscript *. 

Making use of the condition of passage through the speed of sound, we find from Eqs. 

(1.3) 

(1.2) that 
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We recall that the radiation flux is directed toward the body, so that K < 0. In an- 

alyzing the equations it is more convenient to consider h,, F. , and T’* as the given 

quantities rather than h,, Fm and ra. 
Let us refer all of the quantities h, p, P , U, F, 7, K and 1 to the corresponding 

values in the critical cross section, denoting these new dimensionless quantities by the 

same letters without subscripts. Eqs. (1.1) then become (1.4) 

purY-l = i. tip + ypu dzr = 0, I1 + ‘/Gl’ (r - 1) + x -= F v/2 (r +I If xl 

dF Fq F 
-=-=-1 dr i, 1.1 

/Z=+ 

(we recall that the right-hand side of the third Eq, of this system is equal to zero). 

The dimensionless radiation flux P> 0, and the dimensionless criteria x and i have 

the following values: 

x= Qlh,, A= &c/r, (l-5) 
Relations (1.3) become 

M = (- Fe) M' 

h, P/2 (-: + 1) + xl ’ Qztz = 5 (y - 1)’ g&‘+“-1 (I -6) 

thus, if FL, h *, and r* are given, we can determine Q*, p*, X,and 1, = 1 1 X,Q,, 
and therefore the parameters 1 and X. For the critical combination we have 

h=p=pzu=F=-r=l (W 

Integrating the system in the domain r> 1, we find the dimensionless quantity F( F,). 
i. e. the dimensional value of the total incident radiation flux pm; integrating in the 
domain 7 < 1, we find the relationship between h(r) and p(r) and can determine the 

ratio R of the body radius TO to the specified radius r. of the critical cross section as 

a function of the ratio NR ) of the vapor enthalpy h, to the arbitrarily specified quant- 

ity he. Thus, the true size of the critical cross section and the true value of the gas 
enthalpy in it remain unknown. But the point where conditions (1.7) are fulfilled is a 
singular point of system (1.4). Passage through this point along the single integral curve 

passing through it requires fulfillment of an additional condition for i ; in other words, 
a specific relationship must exist between the radiation free path a* in the critical cross 

section and the radius r. of this section, and therefore between $3, and F, The need for 
this condition is apparent from the qualitive arguments set forth above, 

2, We shall now determine the quantity 1 on the basis of the condition of continuous 
acceleration of the gas, Introducing 

&$ Z yv-1 9 g= u2 , Co = (Y - 2, / (Y -- 1) (2.1) 

and differentiating the algebraic relations of system (l-4), we obtain 

dF 
-= 

F 

After the appropriate eliminations this system yields 

dg P--g) 
-------_ 

g h (2.3) 
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Expression (2.3) clearly implies the following. In order for the gas to accelerate 
continuously in passing through the speed of sound (h-= Q =U2 ) it is necessary that Eq. 

be fulfilled in the critical cross section (s=_!= 1, K -. 1, h-g t: 1). 
Otherwise, with h=g , in accordance with (2.4) the gas acceleration (~&Y/C@ = oc) 

and changes sign. 

In order for the gas to continue to accelerate it is necessary that the change of sign 

(h-g) be accompanied by a change in the sign of either the quantity ds or the express- 
ion in parentheses in the right-hand side of (2, 3). This occurs if (2.4) is fulfilled. The 

quantity d,.!? cannot change sign, since we have accepted the condition of continuous 
increase of the jet cross section with distance from the body (a nozzle with straight. 

walls), I, e. d$,&does not change sign. T’ne necessity for acceleration of the gas fol- 
lows from the fact that, by hypothesis, the efflux is into a vacuum, so that the motion is 

hypersonic for p-+0. 

This is clear in the case of adiabatic motion. BUT the major effect of heating lies 
solely in the fact that the motion at large distances from the critical cross section is 

isothermal and the quantity F, is finite (h cannot increase continuously wit& a finite total 

incident radiation flux F by virtue of the energy balance equation of sytem (1.1) or 
(1,4) ). Thus, the kinetic energy g and the maximum velocity of motion Z& must also 

be finite. 
Let us write the equation of moments of system (1.4) for the case of isothermal mot- 

ion, 
p+qL(J, p = P exp (- r.2 / 2h) (2.4 

Here P is an integration constant Clearly, the condition $?“+OimpLies that 

u/J& + 00, i. e. the motion becomes hypersonic. We note that isothermal motion 

is a limiting case which, strictly speaking, is not realized, since a finite himplies a 

finite U. 

When condition (2.4) is fulfilled, Eqs, (2.2) and (2. 3) become (for X = 0 I i. e. for 

h* >A!) 
dF 2 x dS 
--=(YpjTc F 

h = % [F (r + 1) - (T - 1) gl 

1/2 tT + 1) (F - g) S dg = 2g’lz (FxS-” - kg”’ )dS’ 

(24 

As is evident, the critical point becomes a singular point of system (‘2.6), and it is then 

possible to avoid infinite accelerations in passing through the speed of sound and changes 

in the sign of (dQ/dS) p rovided there exist integral curves passing through this point 

As will be shown below, such a curve doe%, in fact, exist, and is unique. 
Integrating (2.6), we can determine the dependences of F and,&7 on s, and hence on 

h. P, andp. 
In order to find these dependences we must specify the relationship between the ab- 

sorption coefficient and the thermodynamic parameter hand P or p and P. We shall 

assume that this relationship is exponential, 

3c = Kh-“p” (2.7) 
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With a constant absorption coefficient (X= const) a = fi = 0. When radiation is ab- 

sorbed by a completely ionized gas (free-free absorption) [5 and 61 ,CZ = 3/2 and p = 1, 

and the coefficienr K-l/(h~}~, where hv is the energy of the radiatian quanta. In a 

multiple ionization zone [6] the function “(h, p) can also be expressed approximately 

in exponential form. 

3, It is generally necessary to find the maximum heating, hax, for given values of 
F$ and TO. Neglecting absorption in the hypersonic portion of the nozzle, we have 
bBX&* and ,??&+Fx, By (2.4). for v= 3 and x=0 the parameter x =(y+ 1)/4, i. e, the 

free path of radiation in the critical cross section A? * is 1, 5 to 2 times smaller than the 

radius T,, of this cross section, Hence, the layer where the gas is heated from h= hS CC 
<<h* to h=h, is on the order of TO, and we cart assume that T, is on the order of the 

body size rce Let us evaluate the accuracy of these assumptions by computing $he optiF 

cal thickness of the adiabetic jet in which the gas moves at hypersonic velocity without 

heating and by determining the width of the heating ione in a gas moving with.3~nic 

velocity in a one-dimensional (planar) configuration in such a way that the Jouget rule 
is fulfilled at the boundary of this zone. 

We begin by writing out the relationship for the parameters in the adiabatically exp- 
anding gas, 

Thns, alt of the quantities are expressible in terms of the single parameter U , i, e, in 

terms of the ratio of the gas velocity to the velocity of the gas and the speed of sound in the 
critical cross section(as before, we shall make use of dimensionless quantities). 

In a gas whose parameters vary in accordance with (3.1) and whose Kobeys law (2.7), 
the optical thickness 72 is given by the Expression 

x = h-“$ = pb, b=p-(~-1)a (3.2) 
W W 

hz, = 1 xpdr = 5 pb+ldr 

1 1 

(3.3) 

We must note that for y = 5/3. c1= 3/2. and 13 = 1 the absorption coefficient is constant 
provided the gas parameters vary adiabatically, but 4-m as expansion progresses. With 

y.<5/3 the index b>o, i. e. the absorption coefficient was the density decreases. For 
example, b = 2/5 for y = 7/5. 

Making use of relation (3. l), we obtain 

;p = fpp)-L’i-Xl, dr =-2 (up}” ! e-1) 1. - z&a du 
V- 1 ~--2w-w(,T+1)~ (3.4) 

Hence, Expression ( 3.3) becomes 
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Here U, is the ratio of the maximum gas velocity with adiabatic motion ZL:,;:’ to the 
velocity in the critical cross section. In accordance with (3. l), 11, 2 .= ( y I- l)/( .y - 1)” 
In deriving (3. 5) we made use of Expression (2.4) for X -0. 

For V= 3 and y = 5/3 we find that c = - l/4; for y- 7/5 it turns out that C-5/-L. The 
corresponding values of 7, in accordance with (3.5) are 0.70 and 0.36. 

Considering the variation of the parameters at a sufficient distance from the critical 
cross section, i. e, where u .z u,,, we arrive at the approximate expressions 

x = u, +-l’J-l)lr 
, 

p = II,-lI.-(Y-li (3.7) 

Using this expression throughout the domain 1 < r < ~a, we obtain the following 
approximate value for 7,: 

hz, = U,-@‘*) l(Y - 1) (b + 1) - 11-1 (:3.Sj 

Since (3.7) is valid for r__,co, it is easy to determine from (3. 8) whether the optical 

thickness of a jet (along its axis) of adiabatically expanding gas is a finite quantity. 
Integrals (3,5) and (3.8) diverge for b < (2 - Y> / (Y - 1). In the cylindrical case 

the optical thickness is definite if . L, < 0, in the spherical case it is infinite if 

bf- 1/2.Thus, in the cylindrical case (motion in a “wedge-shaped slot”) with infinit- 
ely long walls or in the case of motion from an infinitely long cylinder irradiated from 

allsides perpendicularly to its surface, the optical thickness is infinite if 1c= const (b=O) 
(finite in the spherical case). This can indicate either that a steady state is impossible, 

or that adiabatic motion is impossible, so that heating cannot be neglected if the expans- 

ion of the jet area happens to be large. 
With isothermal motion b =@ ,so that in thecylindricalcase the optical thickness is in- 

finite and steady-state motion is impossible for p >, 0, in the spherical case it is im- 

possible only for fi > -11% . 
Since in the spherical case for X = const or for a = 3/2 and @ = 1 for any y we have 

b>-l/2, the optical thickness 7, is finite, and, since 72 is on the order of unity, absorp- 

tion by the hypersonic portion of the jet is comparatively slight. while at Some distance 

from the critical cross sections the parameters vary adiabatically. 

4, Let us consider the planar motion of a heated gas (v= 1). From the first and second 
Eqs, of (1.4) we have 

From relation (4 1) we see that as U*, i. e. in the case where the gas entering the 

healing wave is absolutely cold and infinitely dense, the pressure p, =p,, at the heating 
wave boundary exceeds the pressure at the critical point~p. by a factor of just (y+ I), i. e. 
the pressure p* also characterize the pressure PO at the body surface. 

The radiation transfer equation in the case of planar motion can be written as 

dF F 
dr=hl (4.2) 

With a function X(&p) described by relation (2.7) we have 
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In accordance with the third and fourth Eqs. of (1.4) we obtain 

F = ix (2 - u), h = u (1 + y - yu) 

Hence, Eq. (4.2) becomes 

1-d IF-‘dF=hJ(u) a 
J (u) = 5 2 (1 - u) (2 - u)-’ u=+fi (1 + r - ru)= du 

U 

(4.4) 

(4.5) 

The quantity J(O), i, e. the integral in the right-hand side of (4.5) with the integrat- 

ionlimit U=Ois the equal to 0.614 for CL =B=O,i.e.B=l-0,614i. FotU=3/2, B=l 
for y= 5/3,7/5, and 6/5 we obtain J(O)= 0.188.0.172. and 0.160. respectively. 

Before turning to the determination of the precise distribution of the quantities, we take 

note of the nonplanar character of the motion and make the following remark which ap- 

pears to be of some practical interest, Heretofore we have assumed that the problem 

involves just one characteristic dimension, i. e. the size of the body or the size of the 
irradiated spot on its surface. In general, this is, of course, not so. The action of focused 

radiation on the surface of a body often produces a deep, narrow channel. The radius 

r. of the transverse cross section ceases to be a major parameter, and is replaced by the 

channel depth ,!,. We assume that on emerging from the channel the gas expands rapid- 
ly, its density diminishing rapidly at distances (from the channel exit) on the order of 

r. CCL, the two-dimensional portion of the jet is completely transparent With slow 

changes in channel depth, the motion can be assumed quasi-steady-state. If the area of 

the transverse channel cross section varies little, then to describe the variation of para- 
meters within it we must make use of relations (4.1) to (4.4). The conditions dictating 

the selection of burnup parameters are the Jouguet rules at the channel exit and the con- 
ditions stipulating a given thickness of the steadystate heating zone (i. e. it is made 
equal to the channel depth L). Condition (2.4), i e. the relationship between 4. and 
r. ceases to be fulfilled, and the quantity a, is found from another condition 

h= 1,/L= l/J(O) (4.6) 

Thus, for a =@ =0 the radiation free path in the exit cross section of the channel is 

1.6 times larger than the channel length; for a = 3/2 and fi = 1 it is 5-6 times larger. 

All of the remaining parameters can be found from Eqs. (1.3) where F, amd M* are 
interpreted as the mass burnup rate and the radiation flux through the whole of the 

channel cross section. For CL= 3/2 abd B = 1 we obtain (for x =O) 

h, = (y - I)-“’ [ ‘/2 (7 + 1) I-“@ (AK)-*“q,“,‘L*‘* (4.7) 
Here 4 . is the radiation flux per unit area of the exit cross section. 

Thus, the temperature of the gas at the channel exit increases with the gradual increase 

in channel depth, and the density gradually diminishes. This has the effect of increasing 
the radiation free path and reducing the optical thickness of each of the channel segme- 
mems (if the material passing through the bottom of the channel is assumed to be an 
infinitely dense and absolutely cold gas, the total optical thickness of the channel is 
infinite). 
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Fig. 1 shows the distribution of gas parameters 

as a function of channel depth for K = const 
As in the case of an expanding nozzle with 

straight walls, the establishment of a quasi-steady- 

state in a channel of constant cross section involves 

lateral spread of the jet accompanied by increasing 

transparency of the 

Steady-state and nonsteady-state motion and heating of a as in channels of variable 
cross section can be considered approximately with the aid B o quasi-unidimensional mo- 
tion Eqs. [3 to 71 adapted to take account of heating. This does not require that the cross 
section of the channel be given. With free lateral spread of the jet we may add an Eq. 
which describes approximately the variation of jet radius with changes in the pressure 
gradients in the transverse cross section. 
vapor is capable of absorbing a 

We have, of course, invariably assumed that the 
substantial portion of the radiation, so that the drop in the 

mass burnup rate and density in the critical cross section would result in a marked increase 
in the radiation free path and thus in the amount of applied heat, which would in turn 
increase the mass burnup and density. If, on the other hand, the vapor is perfectly trans- 
parent, absorption occurring only in the unvaporized or incompletely vaporized material, 
then, of course, neither the size of the surface spot nor the channel de th determine the 
burnup rate, and the motion of gas in the jet or in the channel is pure y adiabatic. f 

A steady state can also arise when all heating ceases upon attainment of a certain 
temperature (e. g. through the dissociation of the absorbing molecules). The same thing 

can happen when the density drops below a certain limit or when there is a transform- 

ation to another phase state, provided these effects alter the radiation absorption mech- 

anism markedly and produce a sharp drop in the absorption coefficient. With such 

motions the burnup rate is determined not only by the Jouguet rule, but by yet another 

physical parameter such as the transparency temperature. All quantities on such a plane 

heating and vaporization wave can be determined with the aid of relation (1.3) for V = 1 

by specifying one of the parameters, e. g. h,, 

M’ _ “;; ) p* = F, CT - ;l!s h,‘:2 ) H = l/2 (r + *> h* + Q (QJ9 

Here the parameters in the heating and vaporization wave are independent of the body 

size. The quantity firepresents the effective “bwnup” enthalpy; it is sometimes the 

case that XmQ if Z”S>.?‘~. 
On the other hand, for V= 2 and v= 3, a steady state for the motions considered is est- 

ablished even if heating does not cease “for physical reasons”. 
6. We shall now construct precisely the parameter distributions for the spherically 

and cylindrically symmetrical motion of radiation-heated gas involving passage through 
the speed of sound. This will enable us to determine the relationship between the max- 
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imum heating bBX, the pressure PO at the surface of the body, and the body radius r, 

on the one hand, and the parameters h,$# and r* at the critical cross section on the 

other. Taking account of its integrals (see (1.4)), we have already reduced system (2.2) 

to a system of two ordinary Eqs. (2.5). Expanding L?(g) and F(g) in a series near the 
singular point F=g =s= 1, we obtain 

S--l= 11s (y + 1) 2 (g - 1) F - 1 = 2 (g - 1) t.j.1) 

The slope 2 of the integral curve ii(g) passing through the singular point is found by 

solving the quadratic Eq. 

uza + bZ - 1 = 0 (5.2) 

In the spherical case ( V = 3), when the dependence of the absorption coefficients on the 

thermodynamic parameters is exponential (2.7), the coefficients aand b are given by 

the Ew. 

a = f/s (3y - 1) + 2a + By, b=3-y--fL--a(y-I) (5.3) 

a = 1/2 (3~ - I), b = 3 - y, a = 0, f! = 0 (5.4) 

a= “/a (y+i),j b= 1/S (7-5y), a= 3/a, B= 1 

For CC.=o, B=O we have z= 0.445 for y = 5/3 and z= 0.435 for y = 7/5; for U = 3/2 

and @ = 1 we obtain z= 0.440 for y = S/3 

2 and z= 0.408 for y = 7/5. Thus,theslope 

2 changes little with Ct. @ , y , i. e. the 
functions F(g) also changes little. 

Proceeding from the singular point in 
accordance with Eqs. (5.1). we can int- 

egrate system (2.5) numerically. The 

results appear as the solid curves in Fig. 2 

for CL =o and B =o and in Fig. 3 for a = 3/2 

-__ and @=l,as wellasinthe table(for v=3). 
These data indicate that, in fact, for 

0.5 I 1.5 2r Ct = 3/2 and @ = 1 the parameter distibution 

Fig. 3. 
can be approximately described by relat- 

ions (3.1) in the hypersonic portion of the 

nozzle (broken curves in Figs. 2 and 3) and by relations (3.9) and (8 12) in the subsonic 
portion. Near the critical cross section, where the radiation is largely absorbed by the 

hypersonic portion of the jet, the motion is practicaliy isothermal. Hence, the exponent 

Ct has little effect on the ratio of the flux F, in the critical cross section to the incident 

015 2.47 1.54 3.33 4.96 2.80 
0 0 ‘Is 

0.670 
2.42 1.23 2.45 3.78 3.20 0.6G3 

5/s 2.35 1.15 2.00 3.06 3.78 0.620 

@/J 

I 

1.30 1.06 3.33 
% 1 ‘/5 

3.66 , 2.10 0.904 
1.02 2.45 

5/a 1’:Z 
0.891 

1 .Oo 2.06 ;:; ::z 0.874 
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flux I-. 

The maximum enthalpy is, in fact, close to h,, and the pressure p0 on the surface of 

the body is close to (y t l)p; the radius To of the body does not differ greatly from the 
radius r* of the critical cross section For CY,=@ =o the disparity between the results of 

numerical integration from those obtained by approximation is more substantial. 
6, Let us consider the cylindrical case (u 2). Although, as was shown above by 

u 1 2 3 9 

Fig. 4. 

means of estimates, steady-state 

motion is impossible in some cases 
because tne optic21 thickness of the 
hypersonic portion of the jet is inf- 

initely large with infinitely long 

“wedge-shaped slot” walls. How- 
ever, if these walls are of finite 
length and the slot is narrow, so 
that the gas entering it expands rap- 

idly and becomes transparenr, or if 
the gas ceases to be heated {for phy- 
sical reasons)starting at some trans- 

parency temperature, then such mo- 

tion is possible. Let us analyze this 

case in greater detail. This will en- 

able us to use a similar approach in 
analyzing the somewhat more com- 
plex spherical case. 

For U= const system (2. 5) can be transformed into a single Eq, for iq’and 8, 

8’ (F - g) dg = 2g IF - g”z 1/a ((y + l)F - (y - l)g)l dF (6.1) 

Fig. 4 shows the field of integral curves of Eqs.(G. 1). The line c@/c,?F=ois described 

by M. 
F = cp (49 = l/a h - l)g’V/2g1/2(y + a> - Ilk1 (6.2) 

For large g this line is the straight line F=g( y - l)/( y + 1). However, this limiting 

curve is attained only for gg, and F, On the line fig where passage through the 

speed of sound occurs, dg/dp=” and dF’changes sign; but this cannot happen, since the 
radiation is merely absorbed. 

‘The integral curve p(g) corresponding to a state of continuous acceleration of the 

gas and to passage through the speed of sound passes through the point pg= 1, 
The slope 2 of this curve is found, as in the case of spherical symmetry, from (5.2) 

where tX=(y- 1) and b= (3y- 1). 
Fig, 5 shows the parameter distri- 
butions along the nozzle axis for 
X = const obtained by numerical 

integration of Eq, (6.1). i. e. for 
V= 2, and system (2. 5) for v = 3 

(broken curves). 

-Fig, 5, 

Quite naturally, the functions 
describing motion with heating 
must be replaced by relations (3.1) 
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at some distance r where the nozzle walls terminate. 
We are now confronted by the question of the uniqueness of the steady-state motion, 

On the one hand, subsonic motion is impossible. On the other hand, passage through the 

speed of sound is possible only at the singular point F-g=& 1, 

As we see from Fig. 4, the singular point is a saddle point through which the unique 

integral curve passes. The same applies in the spherical case ( V= 3) and for K# const, 
since the behavior of the integral curves is similar to their behavior for Eq, (6.1). 

According to (5.2), for v= 2 the slope 2= 0.581 (for y = 5/3), i. e. even the slope of the 
integral curves is close to the slope for V= 3. 

Of course, in these cases (v= 3 and ?t# const) one cannot use the results obtained by 
analyzing (6.1) for large Pand g. The line dg/dF=Ois described by Eq. 

F -= (y - l)g (y -; I)-’ [I--:! x s (y -t I)-“’ g-y- (6.3) 

Thus, for S+a and H = const, and especially for ?t* 0, we find that PQ y - l)/( y + 1). 

This means that when the solution goes beyond this limiting straight line (gT,x, 

FF, a x ) the heating is immaterial (the thermal energy is much lower than the kinetic 

energy: &<g). Hence, we can make use of the results of the above analysis for the case 
of an adiabatic jet and show that the optical thickness of the hypersonic portion of the 
jet is finite, so that p is also finite. Thus, the steady-state transonic motions with hert- 
ing are, in fact, unique. 

7, Let us consider the dependences of the parameters ?Z,, p c, P + in the critical CMSS 
section and the mass burnup rate K on the radiation flux F, in this cross section and on 
the radius ?“* of the cross section Since X= l/AP , in the critical cross section we have 

Ir, = 1, = (X*p*)-’ (7.1) 
Assuming that the relationship of H, h. and P can be described exponentially (2.7), 

we obtain 

T* = (X*P*P = (XK)” h*“p*~ 

From (7.2) and (1.3) we have the relations 
p* = h*Q / MU ( hKr,)--l I (B+l) 

F, = g (Y) (r - 1)“’ h*%+(’ ’ w~l) [‘/a (y + 1) + x] ‘*E (hK)-u@+” 

M’ = I; (q (,a _ l)%~*‘h+= / @+l) (hK)-” (b+l)$ 

p* = r%:+a ’ (8+1) (y - 1) (AKr,y’“+‘), 5 =; y - 1 - 1 / (p + 1) 

Let +t= coast We then have 

P* = (h%J1, p* = r-‘h, (r - 1) (hxr*)--1 

p* = 5 (v) (r - 1)” h,” [l/z (7 + 1) + xl r*“-a (&x)-l 

M' = 6 (v) (y - i)"'h,lb,*"-a(~x)-~ 

With ha >>8, when we can set X=0, and for P 3 we obtain 

(7.2) 

(7;3) 

(7.4) 

(7.5) 

Here we have introduced the radiation flux per unit area of the critical surface, 

p .=F,/mf. 
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Since the maximum value of the dimensionless enthalpy .J&,, ior each value of \~and 

u(with X=0) is a definite number found through numerical inregrat~on of (2.6) from 

the point (1.7). the dimensional maximum enthalpy & a X is proportional to ,%,. In pre- 
cisely the same way, the quantities p0 , To ,F, are proportional to p 4, r,,Lv,, respect? 

ively. Hence, (7. 5) implies that with a given flux p 8 the quantity & a X i::creases with 

increasing body size r0 , while p,, diminishes. With a fixed total radiation flux F, 
the uanrity p0 increases with decreasing radius To f 

% 
but somewhat more slowly than 

V-, . The quantity ha X also changes with changing sphere area, but more slowly 
than this area. The danendence of the pressure pQ on the absorption coefficient is like- 
wise rather weak (as 1 / xl!,:, rather than as 1 / x ‘12, as in the case of nonsready-stare 
planar expansion Cl]). 

We nate that the dependence of& on Q , T, and Ncoincides ro within a numerical 

factor with the dependence [S] on these parameters of the pressure at the center of an 

expanding layer of constant mass at the ins&ant when the rarefaction wave passes from 

the edges of this layer to its center (wher&pon the entire gas layer begins to expand 
two- or three-dimensionally; prior to this insrant the expansion In the central. zone is 

one-dimensional (planar) [l]), 
The author of [S] has already noted that the two-dimensional character of the gas 

motion becomes significant after this instant* 
In fact, with planar motion and a constant mass absorption coefficient, radiation is 

absorbed in a layer of constant mass, since despite the expansion of the layer, i. e. the 
increase irk its thickness X, tne radiation free path 1 - 1 / P and F - ml ! & where ml 

is the mass of the layer per unit area. so that the optical thickness T1 wk! -‘X of the 
one-dimensional zone is constant. Two- or three-dimensional motion begins at the 

instant when the layer bss expanded to a thickness X comparable with its lateral dim- 

ension r, . The radiation-heated layer expands at a rate on the order of the average 

speed of sound p] corresponding to the heating of the layer achieved by that instant: 

the instant is roughly coincident with the instant of meeting in the center of the layer 

of the rarefaction waves arriving from its lateral edges. From this instant on the pressure 

gradients level off, as do the characteristic velocities of motion in rhe Ia-ceral and princi- 

pal directions. Thus, the layer width P43an 8, where 6 is the average apex angle of 

the jet and tan 6 is on the order of unity, so that 
p ti mlro / xz, do, GZ xdm, dm = pdx 5 (m,ro I x”) dx, 

i. e, the mass m2 along the beam path and the optical thickness 72 of the two-dimension- 

ally spreading layer diminish. The radiation penetrates into the deeper layers, The op- 

tical thickness of the entire two-dimensional portion of the jet is COnstam 
Co 

with T2 determined principally by the optical thickness of those layers of the two-dim- 
ensional portion of the jet which are adjacent to the boundary of the one- and two-dim- 
ensional portions, and the quantity 72 is of the order of the optical thickness 71 of the 
one-dimensional portion. 

Steady-state burnup apparently begins with the inception of two-dimensional motion 
The characteristic parameters in the steady state depend on the magnitude of the radi- 
ation flux and initial layer width rO(i e. on the end face area of an irradiated rod or 
on the diameter of the irradiated surface spot) in the same way as in the exact problem 
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of the motion of a sphere considered in the present paper. In the latter problem tinis 

motion is radial from the very beginning (both during the “actuation of a conical nozzle 

with straight walls”, and in the steady state). 

Let us make one further note. Although the motion is steady and the parameters de- 
pend solely on the energy flux I’, if the total applied energy&‘=FT( Tis the time for which 

the energy is applied) is held constant while T is varied, the parameters depend on 7. 

The pressure PO - 1 / -c*‘* and the pressure impulse J = poz _ T’-‘~, i. e.. it increases 

with the duration 7 in contrast to the case of one-dimensional nonsteady-stateexpansion 

Cl], where ,&, -1/T and Jis independent of 7. 

This conclusion is, of course, valid only up to a certain value of T , until hBJ( becomes 
comparable to Q(i. e. as long as XC< l), after which the increase in impulse with T 
ceases. 

Let Cc = 3/2,p= 1. Then 

pI = h,” (hKrJr*” , p* = (y - 1) h*“; (hKrJ+ r-’ 

*$J’ = p (y) (7 - I)‘/2 ha8 Q-:2) @K)“” (5.6) 

F, = t (v) (y - 1y2 h*s~4r*(y-ai’) [‘/z (y + 1) + xl (m-)+ 

In the spherical case ( V= 3) for x<<l we find that 

Thus,decreases in the radius 7”, of the sphere (changes in the radiation focusing) with 

a fixed total flux F, produce increases in p, and PO and a slower increase in &ax - 
with a fixed q,, decreases in r, are accompanied by decreases in h, . Thedependence 
of the pressure p. on r. is especially weak. All of the parameters vary very slowly with 
changes in the coefficient Kin Formula (2.‘7), i. e. with changes from one material to 

another or with changes in the radiation wavelength. 
As already noted in the introduction, a necessary condition for the establishment of a 

steady-state is p,<< PO , where pois the normal density of the material constituting the 

solid. From (7.4)) as from (7 6), it follows that this condition is fulfilled for a body of 

sufficient size. Another condition is a sufficient heating duration T ; it must be larger 

than the time required for the establishment of the steady-state. 

The authors of @] consider the problem of propagation through a dense substance of 

a nonsteady-state self-consistent plane rarefaction and heating wave The speed at which 
the rarefaction wave propagates is (elm / dt) z PC z p f& where p is the characteristic 
density in the wave (p < ps 4 PO), h is the characteristic value of the enthalpy attain- 

ed as a result of heating (h & Q > h,,), is the corresponding speed of sound; ??I is the 
mass of material caught up by the wave As the mass of the heated laya incrases. heat- 
ing of the entire gas layer by the radiation requires a decrease in the characteristic ab- 
sorption coefficient Pt. If H varies in accordance with law (2.16), the condition that 
the optical layer thickness 7, is the order of unity results in the following relationship 
of the characteristic parameters: 

Khea p@ m z i 

From the balance relationship for the energy applied to the gas and theerrergy present 
in it we obtain hm = q4 

hLz+l. + 
P z qKt 
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Qrbstituting these relations into the equation for the speed of progrgsion of the front we 
obtain 

dm g%JB a 
VW_ 

pp/S+‘ft 

dt - (Gp== m~O:+~~/%kK~/~ 

Integrating, we obtain the law of motion of the front, 

m :h+@+r)/,“, Kr[@ S Q2/1+ala t%+a[fi 

For a= 3/2 and B = 1 this relation leads ro the following depstrdences of the parameters 
on the flux and time: 

n2 z q’ta K-Y4 t”lS , 2 “, $4 KY’ {la 

h =: g*h (Kt)‘k, p ;=; q8/’ (In)-“” ) 
p $5 qlf’ (K&)-“f~, (dmjdt) z p’f” (Kt)“f* 

Here JJ is the characteristic pressure and X= %$I is rhe character&& thfckness of me 

self-consistent wave. The effects of nonun~d~mensiona~ motion make themselves felt at 
the instant when X=TO, where To is the dimension of the irradiated area Hence, the 
instant of inception of ~WQ- or three-dimensional motion and the parameters at this inst- 

ant can be found from the following expressions: 
t z r,h-% S $/s (I-21* K-“0, h = Q “i, W4 *, .p M $8 (KT*f~’ 

p w qjir K-’ fS,< fs, MT s (d~~~dt~ ,k;, q’f* <f* g-‘f* 

Taking T+?“,, we find that the laws of variation of all the parameters coincide with 

those cited above for the steady-state We note that although the dependencer of h , 
$7, and P on the characteristic dimension ?, for a fixed flux Q on the surface of the body 

are very weak, it is precisely the nonunidimensional character of themotion which leads 
to the ~s~b~~hrnent of a steady-state, while the motion in a pIanar wave is nonsteady 

Thus, soon after the instant when the rarefaction waves penetrate from the side surfaces 
of the jet to its center the temperature stops increasing, the density stops decrasing, and 
the rate of burnup dJ72 /de stops diminishing 

If the motion is not strictly radial (if, for example, the parallel beam of rays falls on 
the end face of a rod or on some limited area of a plane), then the picture of motion and 
such parameters as the mass burnup rate and maximum temperature can, of course, dif- 

fer from those obtained in the problem of radial motion of a gas heated by a 
radial radiation flux, just as the rnas expenditures in nozzles of varfousshapesdifferr 
from each other for the same critical cross section Nevertneless. for estimates of more 
complex motions we can make use of results obtained through precisecomputation of the 
problem on the radial motion and heating, and especially through the similarir)r laws for 

steady-state burnup derived above Here we must assume that the shape of the body does 
not change during burnup (these similarity laws can also be obtaind by simple dimens- 

sional analysis) 
8. Let us consider some numerical examples Paper [5] contains a discussion of the 

problem of heating of ionized gases by laser radiation up to high temperatures on the 

order of Id’* K. At such temperatures the internal energy @of a unit mass of deuterium 

plasma is 4.3 x 10%rg/g, so that the ~~thalpy h = ye sz 2 ~‘10~5 %rg/g. For a density 
p = lo”g/crn3 the free patbR of radiation of wavelength 6000 A is approximately 
16%11, so that the absorption coefficient K%IO* cm’/g Hence, K = xhd’Bp-r z 1W’ 
CGS units, me value h z 2,x ‘166 erg/g for r* z 1Oba cm can be attained if F* s 10” 

I3 erg/set = I db w= LO J/nsec (L e- Q dzdlt?” erg/cm”sec = 10 W/cm’ = 1 ti I/em2nsec) 
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If the heat conduction loss is neglected, then, when the radiation is confined to B cone 
rather than falling from all directions, the true applied flux is essentially F,n/4n, where 

fl is the solid angle of the cone. One should bear in mind, however, that with a nPrrow 

cane or flat channel, the wall length can become an important parameter: further, it 
may turn out that heat transfer through the walls is not negligible. Electronic heat conduct- 

ion plays a substantial role in the example being considered, 
in fact, since the density of the radiation-heated gas must be smaller than 10” g/Cm” 

(the electron concentration II < :i xlo2ll/cm’aand no radiation is reflected [S]), it follows 

that the condition rt 2 1o-2 cm must be fulfilled for the given Value Of F. . 
in order to guarantee sufficient time for the steady-state to be established it is nee;s- 

ary that the material layer expand to distances larger than ?“+ : hmx?, the time rewired 

for estabrishment of the steady-state is of order r,/U +, This is the condition of the re- 
quired duration of energy application (an energy application process lengthy from the 
gas dynamic stand~int is often very brief on the ordinary time scale). With an expan- 
sion velocity u,~ of 5 Y 2~17 cm/see the steady-state establishment time is of order 0.2 

nsec. 
At such high temperatures the effect of electronic heat conduction becomes considet- 

abfe even with times of order of nanoseconds For p% Id” !?‘we find the k&l’ = 4~XlP 
er 

83 
/cm set, where ?z, is the coefficient of heat conduction (k, - T’:z) and p* C,T = 

10 erg/cm’ (for p+ = IUP g/cm2 where C, is the specific heat per unit mass. Hence, 

the coefficient of thermal diffusivity 17 == k‘e ! EP C, =; 4 X IO2 cm2tsec. Heat rapagates ~ 
to a distance of order 1/~1, i. e. to a distance of order 2 &-‘cm for 8 = 10 

-8 
sec. 

Mence, the motion is somewhat complicated by the influence of heat conduction in the 
example under consideration, For a smaller total flux F, the quantity hL, . and therefore 
the temperature yS, would be smaller, making possible the use of the equations and sol- 

utions in which heat conduction is not taken into account, 
for qplob 

Thus, for $‘@O’ W (i, e, 
W/en?) the quantity ?I ~ is equal to about ld4 erg/g (T, z 5 x i@” K), 

U,zzlQ 7 cm/set =: 100 km!;ec. and with ~,NN IO2 cm the time of establishment of the 
steady-state is of order 10 sec. The densi.$ 0 * is approximately IO* T/cm3. and the 
burnup rate with a spht;e density ofil g/cm is just lo4 cm/set, i. e, the boundary of 
the sphere shifts by 10 cm in 10 set, so that the radius of the sphere remains pract- 
ically unchanged. The pressure p * in out example is very high, of order IO4 kg/cm’. 

l,et us make some notes concerning the applicability of the above formulas. In the 
Course of our discussion we assumed chat for any ifand P the absorption coefficient 
varies in accordance with the law x - 7”‘!2 11, i. e, thatsit increases with decreasing 
temperature. E&t for T 6 M*‘K, wiren the gas is not ionized, the absorption coeff&ient 

can drop sharply if the radiation wavelength lies in the optical range, There tfien arises 
the problem of heating of the material from a temperature of order lo40K, i. e, to the 
plasma state, This problem does not arise if the radiation is so powerful that the energy 
flux at the sub~i~at~ng surface 

49 = Fm,’ 4~~0~ 

(the vapor does not absorb prior to its breakdown) is sufficient to produce breakdown 

(according to the data of ES] and P], the induction of breakdown by radiation of ener 
&J*Z e rin a cold gas with an ionization potential 1~~15 e Vrequfres a fiux,e = 1 P 
W/Cm2 or & ;4: 3 O8 W for ? = 10% cm in the case where /L&10” g/cm’; & diminishes 

with increasing pressure p [6 and91 to values of order l-10’ W/cm2). vapor is relmsed 



at a temperature of order of Iifkor even higher (with superheating in the liquid phase), 

so that the breakdown conditions change, With a sufficiently low ionization potential 
of the vapor material or of impurities present, the equilibrium concentration of electrons 
and the resultant absorption through collisions with neutral atoms or ions [6] can make 

itself felt. This results in self-heating of the material. It is clear that with increasing 
li” the quantit, Q, must also diminish due to the appearance of excited leveis from 

which electrons can be “plucked off” by long-wave radiation by way of the photoelectric 
effect, Nor does the above problem arise in the case where the radiation contains a 

sufficient number of quanta of energy ?@>I, i. e. quanta capable of producing ioniza- 
tion which are absorbed at small depths a in the cold gas (usually [65 .&lo-&cm for 
p~J0* g/cm3). These quanta can be either present in the incident flux or arise in the 

heated gas itself. 

We shall not consider this physical problem, and bring to a close our discussion of the 

hydrodynamic problem of selecting a constant material burnup rate and determining the 

steady-state with lateral spreading flow of the radiation-heated vapor jet, 
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The following problem was investigated. A layer (-a Q z \<.a) of thickness Zz releases 

heat into the surrounding space in accordance with Newton’s law, 
hth/i?h -j- ku = 0, Z= 33 (0.~1 

Here x(2 0) is the coefficient of heat conduction; k(< 0) is the coefficient of heat 
transfer: the temperature of space surrounding the layer is assumed equal to zero: a/&2 is 
differentiation with respect to the exterior normal, 

In the midplane of the layer (z=O) lies a disk of unit radius with its center at the 
point ( 0, 0,O). The disk is assumed to be at the temperature 

UIn = g (9.2) 

It is also assumed that the function g E C, (i.e. that it is doubly continuously dif- 
ferentiable). We are required to find the steady-state thermal field U in the layer with- 

out sources, i. e. the function U at all internal points of the layer (except at points on 
the disk) which satisfies the Laplace condition and the condition at infinity 

Au = 0; u (2, y, z) + 0, for (3, Y, 4 --, * (9.3) 

The symbol =+ :denotes uniform convergence. In the present paper we shall find the 
asymptotic form of the solution for k -+ 0 and k --, 50. 

The most curious case is that of the asymptotic form for k + 0 (Sec.6). which cannot 

be arrived at formally, and requires “nonformal” investigation of the influence function. 
When the layer is replaced by a bounded body, this asymptotic form can be obtained 
formally and can be written as 

k-‘u_~ + uo + ku, + k2u, +_.. (0.4) 


